Quantification of the mitigation hierarchy

A CASE STUDY FOR THE PLNG NATURAL GAS PIPELINE

Sahley, C.T., B. Vildoso, C. Casaretto, P. Taborga, K. Ledesma, R. Linares-Palomino, G. Mamani, F. Dallmeier, A. Alonso

Smithsonian Conservation Biology Institute/ Biodiversity and Monitoring Assessment Program Peru LNG

PERU LNG

Location Map

PERU LNG 14 Ecological Landscape Units (ELU)

Challenge: Quantify avoidance, minimization, restoration and residual impacts

Overview: Objectives & Methods

- Avoidance by micro-route changes: comparison of original vs final pipeline route.
- **Minimization** by reduction of width of pipeline RoW (spatial)
 - Additional measures (topsoil conservation)-measured via restoration success
- **Restoration** data from restoration monitoring program
- **Calculation** of residual impacts in Quality Hectares
- Data from **BMAP** (Biodiversity and Assessment Program) used to determine scale of impacts, degree of impact, obtain data on habitats and species trends.

Methods: Data available

Steps

Steps

Quantifying impacts of RoW

Residual Impact = Original route impact - { Σ **Avoidance +** Σ **Minimization +** Σ **A Restoration**}

Final footprint Predicted footprint Microrouting Route width minimization

Restoration Effectiveness

Biodiversity/Ecology Data

Data from restoration monitoring (vegetation cover and diversity as compared to control) Assigned a measure of quality as compared to control

Spatial Data

GIS analysis of satellite data

Quantifying original route impact and impact reduction through micro-routing

Quantifying original route impact and impact reduction through micro-routing

Reduction of on-site impact through minimization of RoW width

Restoration

Calomys sorellus

Oligoryzomys andinus Microryzomys minutu

Thomasomys aureus

Thomasor ys oreas

Akodon torques

Thomasomys kalinowskii

ELU 1 Apurimac Valley Montane River Forest

2011

Residual impact Restoration index RoW minimization Avoidance/micro-routing Potential Impact

ELU 1: All habitats

ELU 1: Apurimac River Valley Montane Forest Ecotone

Residual impact Restoration index RoW minimization Avoidance/micro-routing Potential Impact

Regression: year by restoration index ELU 1

ELU 1 Apurimac Valley Montane River Forest

Mitigation Hierarchy by ELU from PERU LNG pipeline

Summary

Avoidance and minimization played significant roles in reducing impacts.

Restoration efforts play a major role for most habitats

Tendencies are positive for most ELU's and habitats.

Lessons learned

Importance of homogenizing diversity "currencies" (habitat classification, vegetation, monitoring protocols) across different data sets

Planning for database and data collection prior to initiation of project is important

Consistent monitoring essential; needs to be statistically valid

Working in partnership with the company maximized efforts

Conclusions

-Mitigation Hierarchy quantification fosters a well-informed and cost-effective decision making process, can help guide offset/restoration/ conservation actions.

-Excellent tool for adaptively managing a project

A science based, statistically sound monitoring program is essential

Thank you

Sahley, C.T., B. Vildoso, B., C. Casaretto, ., P. Taborga, K. Ledesma, R. Linares Palomino, G. Mamani, F. Dallmeier, A. Alonso

Quantifying impact reduction due to avoidance, minimization and restoration of a natural gas pipeline in the Peruvian Andes. Environmental Impact Assessment Review : 66 (53-65)