

Contents

- I. Introduction
- II. Methodology
 - 2.1 Connecting Existing Dams
 - 2.2 Study Subject
 - 2.3 Study Method

III. Result & Discussion

- 3.1 Environmental Impacts
- 3.2 Social Impacts
- 3.3 Economical Efficiency

IV. Conclusion

Introduction

Precipitation

1,283mm
(1.3 times the global average)
973mm

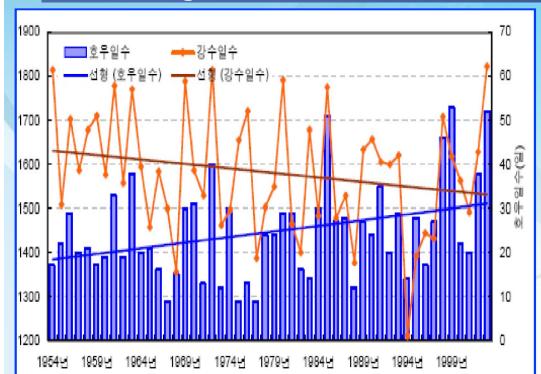
22,096 (m³/year)

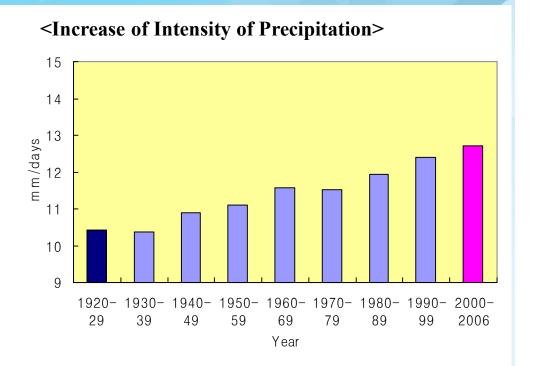
2,705 (m³/year)
(12% of the global average)

Global Average Korean Average Per Capita Global Average Precipitation

Per Capita Korean Average Precipitation

Average Precipitation

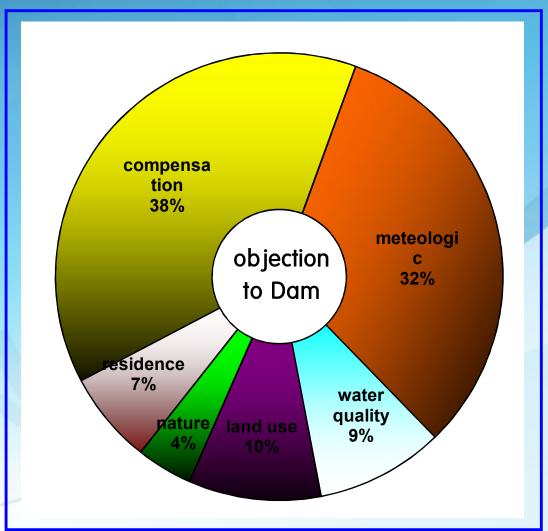

- annual precipitation of Korea is 1.3 times higher than that of the global
- precipitation per capita of Korea is only 1/8 of the global average
- **70%** of the precipitation is concentrated from June to September


Topography

- Total Area: 222,135 km² (100,000km² for South Korea; forest 65.7%, farmland 21.9%, ...)
- About 70% of land is mountainous (river slopes are steep)
- Most rivers flow into the west and south sea
- floods run off immediately

- Unexpected Climate
- Precipitation pattern changed by unexpected climate (recent 20years)
 - → Annual precip. 7%↑, Rainy days 14%↓, Intensity 18%↑
- Imply the necessity of risk management
 - → drought, flood, dam break, etc.

Dams in Korea

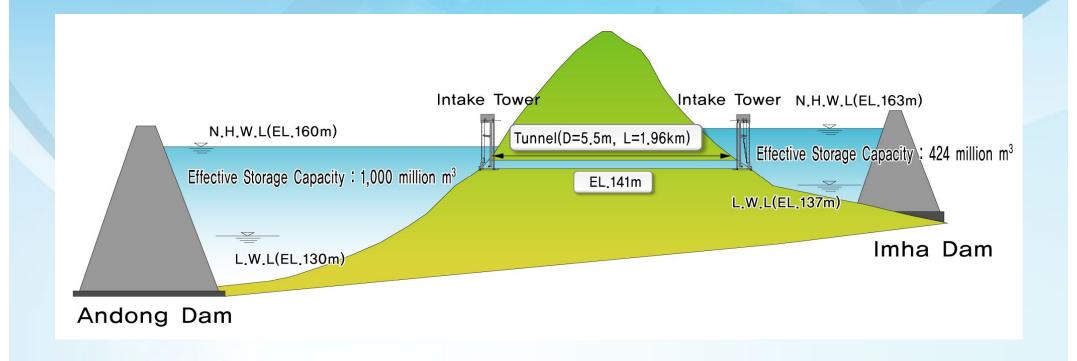

- Present: Totally 18,000 dams
 - **15** Multi-purpose / **14** Water supply / Others (Irrigation, etc.)
 - → Water Supply(17.7 bm³/yr), Flood Control(2.8 bm³)
- Under construction (~ 2012)
 - 5 Multi-purpose
 - → Water Supply(95 m m³/yr), Flood Control(360 m m³)
- Future (~2016)
 - 7 Small size and rehabilitation of agricultural dams(2)
 - → Water Supply(0.76 bm³/yr)

Difficult new dam project

- Dam construction is large-scale development
- It's becoming more difficult

due to the

- shortage of appropriate location
 - damage to environments
 - objections from residents
- need alternative method of solving water problem

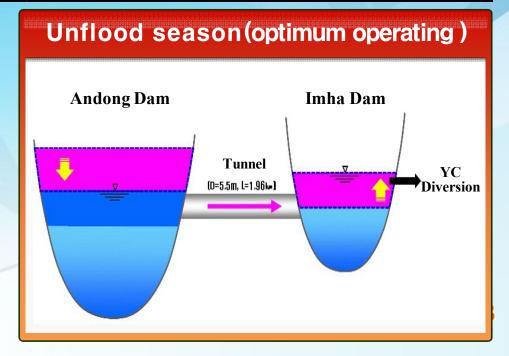


Methodology

- Dam connection project
- Definition: Securing abundant water resources,
 Improving water quality (Nakdong and Geumho rivers)
- Scope: connecting tunnel(D=5.5m, L=1.96km), 2-Intake tower,
 facilities as access road
- Effect : Supplementary water supply 24 million m² / yr

- Information of two Dams
 - Similar basin area but highly storage capacity difference (double)
 - In Imha, frequently occur spillway discharge (7/17 yrs) by basin form

	Basin contents Andong Dam		Imha Dam		
	DEM		### ### ### ### ### ### ### ### ### ##		
	Basin area	1,584 km²	1,361 km²		
	Shape	Thin, long, rectangle	Fan-shaped actiniform		
	Storage capacity 12 billion m³ Water usable 84%		6 billion m³		
			38.7%		
	Spillway frequency	2 in 34years (fourth)	7 in 17years (twelfth)	2	

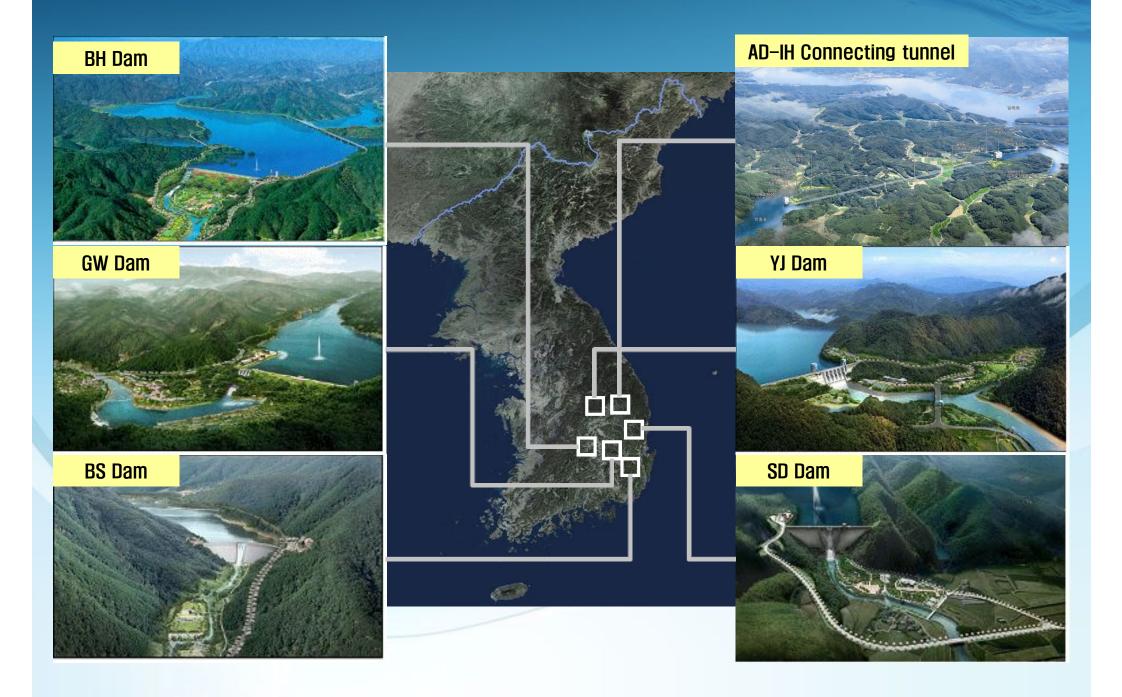

Water securing concept

Flood season: 22.8 million m³/yr securing water by outflow reduction

Unflood season: 1.2 million m³/yr securing water by optimum operating

Contents	Flood season (Outflow reduction)			Unflood season (optimum.	Total	
	Spillway	Turbine	Sub Total	(optimum operating)		
Securing water (million m³/yr)	15.7(65.6%)	7.1(29.4%)	22.8(95%)	1.2(5%)	24.0(100%)	

Andong Dam Tunnel (D=5.5m, l=1.96tel


II. Study subject

- of the new dam construction and connecting existing dams
 - The five Dams being constructed in the Nakdong-River basin
 - Connection with the tunnel of existing Dams (AD & IH Dams)

	Basin	Dam	Size	Total	Flood	Water supply(10 ⁶ m³)	
	Area(km²)	Height(m)	Length(m)	storage(10 ⁶ m ³)	control(10 ⁶ m ³)		
GW Dam	87.5	45.0	390.0	48.7	3.1	38.3	
SD Dam	41.3	58.5	274.0	24.8	4.2	20.6	
BH Dam	82.0	64.0	472.0	42.6	12.3	36.3	
YJ Dam	500.0	55.5	390.0	160.4	75.0	203.3	
BS Dam	62.6	57.0	245.0	17.9	3.5	14.9	

the major dimensions of the five Dams in construction

$\scriptstyle\rm II$. Study subject

${\rm I\hspace{-.1em}I}$. Study method

Environmental Impacts

- using the environmental impact assessment reports (EIA)
- wild animals & plants (were protected legally)were compared in terms of the two projects

Social Impacts

- using the compensation survey reports
- the moved residents & submerged living infrastructures (houses, farmlands, roads, etc) were compared

Economic efficiency

- using the feasibility survey reports and design reports
- the unit cost of water quantities to be secured by the projection were compared by summing up the costs

Results & Discussion

III. Environmental Impacts

- Affected organisms
 - The affected organism are not particularly different
 - Tunnel connects already formed lakes with an underground tunnel
 - \rightarrow no direct effects (removing animals and plants living on the ground)

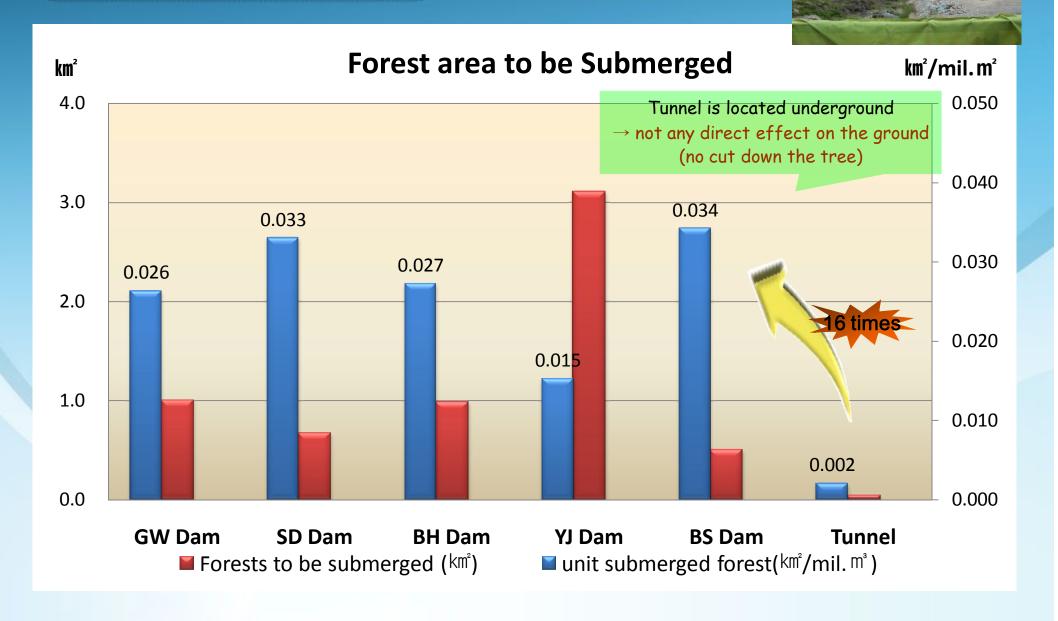
	No. of Speci	es inhabited	Protected legally in Korea		
	animals	plants	fauna	flora	
GW Dam	49	545	otter	Korean Berchmia	
SD Dam	55	379	otter, sable	Korean Berchmia	
BH Dam	52	416	otter	_	
YJ Dam	67	420	otter, wildcat & 2 fishes	_	
BS Dam	33	334	otter	_	
Connecting Tunnel	52	192	otter	_ 18	

III. Environmental Impacts

Species protected legally

Otter

Sable


Korea : class 2 IUCN Red List : LC CITES : Appen. |||

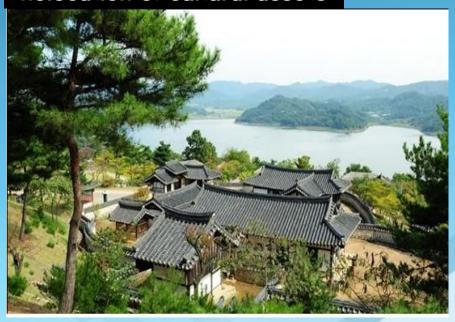
Korean Berchmia

III. Environmental Impacts

Forests to be submerged

III. Social Impacts

- Movements & submergence
 - New dam construction: Avg. 4.74km² lands will be included,
 Avg. 687 residents will be moved
 - Connecting tunnel: 0.19km² of lands, no residents will be moved


	Moving population(no.)		Areas included in the projects(km²)			
	houses	persons	Rice paddy	Field	Road	Total area
GW Dam	288	520	0.53	0.67	0.16	3.61
SD Dam	100	319	0.21	0.31	0.09	1.93
BH Dam	285	769	0.46	1.11	0.16	3.43
YJ Dam	564	1,564	2.59	1.68	0.59	12.71
BS Dam	120	267	0.38	0.42	0.13	2.04
Connecting Tunnel	0	0	0.00	0.02	0.00	0.1 <mark>61</mark>

III. Social Impacts

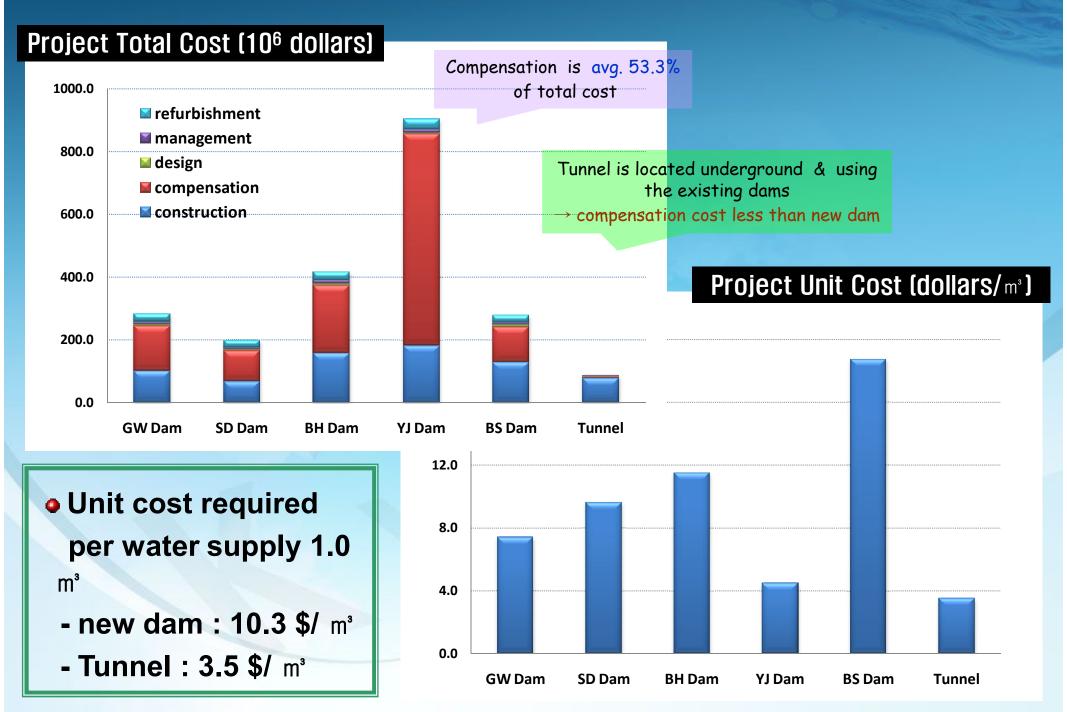
Pull down houses

Relocation of cultural assets

- Changes in the social environments (moving residents, lost value of cultural assets, lands) because of dam submergence
- Connecting tunnel is effective while minimizing social/cultural impacts.

III. Economic Efficiency

B/C on the dam project


Benefits Cost **Flood control** Construction **Domestic & Industrial water supply** Compensation **Electric** power **Design cost Irrigation benefits Management cost Recreational benefits** Refurbishment

III. Economic Efficiency

- Cost for water supply
- The amount of securing water
 0.6(BS Dam)~8.5(YJ Dam) times more than connecting tunnel
- project costs
 - 3.3(BS Dam)~10.7(YJ Dam) times more than connecting tunnel

	Water supply	Total project Unit cost		cost	
	(10 ⁶ m³/yr)	cost (10 ⁶ \$)	(\$/ m³)	Relat. comparison	
GW Dam	38.3	282.4	7.4	2.1	
SD Dam	20.6	197.6	9.6	2.7	
BH Dam	36.3	417.0	11.5	3.3	
YJ Dam	203.3	904.4	4.5	1.3	
BS Dam	14.9	278.8	18.7	5.3	
Connecting Tunnel	24.0	84.6	3.5	1.0	

III. Economic Efficiency

IV (

Conclusions

IV. Conclusion

- The tunnel connecting is designed to temporarily store the spillway drift in flood seasons, from IH Dam(which has a relatively small storage capacity) to AD Dam (has the extra storage space)

 And return it to IH Dam in dry seasons, securing an additional 24 m m³ of water, without creating new dams.
- Connecting tunnels between dams in Korea is judged to be an economical method of securing water resources that minimizes the environmental & social impacts while maximally utilizing existing water resources.

