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Motivation

Sustainable mobility

• Megatrend: urgency & relevance (Golub 2016)

− Positive and negative sustainability-related 

impacts from mobility sector

− Challenges & benefits for industry, society, politics

• Mobility Shift from fossil fuels to alternative 

drive technologies (Golub 2016, Epstein 2018)

− Actors embrace challenges: developing new 

technologies & services, assuming social 

responsibility

− Decision-makers lack understanding of and 

information on sustainability

Fig. 1: Benefits of sustainable

mobility (TUMI 2019)

Need for sustainability assessments to support 

sustainability-oriented decision-making!
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Motivation

Fuel cell electric vehicles &

pressure vessels for mobile hydrogen storage

• Growing focus on FCEV as alternative 

drive technology (Staffell et al. 2019)

• Main components of FCEV
− Hydrogen fuel cell | battery

− Electric engine | converter

− Hydrogen pressure vessel

• Mobile hydrogen storage
− Stored in gaseous state

(20-70 MPa)

− Carbon-fiber reinforced

plastic liner

Challenges Benefits

• Indirect emissions from 

hydrogen (H2) production 

(depending on technology)

• Elaborate and costly transport 

(containers, pipelines etc.)

• Automotive storage at high 

pressures (>70 MPa)

• High weight of components 

(fuel cell and storage unit, 

depending on technology)

• High investment and 

maintenance costs

• Weak H2 infrastructure

• Few commercially available 

vehicles

• High safety requirements

• Zero local emissions

• Low-emission H2 production 

from excess renewable energy 

possible (power-to-gas)

• High energy efficiency (>80 %)

• High critical range/fuel 

economy (depending on 

storage technology)

• Faster re-fueling than BEV, as 

fast as ICEV

• Constant energy supply and 

performance

• Effective method of energy 

storage

• Low health and safety risks

Tab. 1: Challenges and benefits of FCEV

Sources: (Adolf et al. 2017; Lipman and Weber 2018; 

Staffell et al. 2019; Shin et al. 2019; Ahmadi et al. 2020)

H2 flow Electricity Propulsion

Fig. 2: FCEV (Adolf et al. 2017; Ehsani et al. 2018)

H2

Fig. 3: Hydrogen pressure vessel (Yamashita et al. 2015; Lengersdorf 2017)
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Pressure vessel manufacturing for mobile hydrogen storage

Conventional approaches: Single-Filament Winding & Tubular Braiding Technique

Fig. 4: Single-Filament Winding of pressure vessel (Composites World 2020) Fig. 5: Tubular Braiding of pressure vessel (Moore 2020)

Single-Filament Winding (Peters 2011; Barthelemy et al. 2017)

• Reinforcing fiber rovings impregnated with resin

• Moved parallel to rotating core & wound onto it

• Ply structure achieved by combination of cross & 

circumferential windings

• Subsequent consolidation (e.g. autoclave)

• Limitations:
− Possible fiber paths & angles

− Production speeds (single rovings, wet resin)

Tubular Braiding (Lengersdorf et al. 2014; Lengersdorf 2017)

• Dry fiber rovings placed on core (liner)

• Crossing & intertwining of rovings realized by 

revolving/oscillating bobbins

• Subsequent infusion and consolidation of preform 

(e.g. resin transfer molding)

• Benefit & limitation:
− Easier handling of preforms

− Decreased mechanical properties (crimp)
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• Large number of rovings (e.g. 48 or 90) 

placed simultaneously onto liner

• Processing of dry or pre-impregnated fiber 

rovings (“tow prepregs”)

• Process
− Rovings guided through iris to winding core

− Horizontal movement through iris & rotation

− Rovings pulled off & wound onto core

• Benefits & limitation
− Significantly higher production speeds

− Parallel fiber placement (crimp avoidance)

Pressure Vessel Manufacturing for Mobile Hydrogen Storage

Novel approach: Multi-Filament Winding

Vid. 1: Multi-Filament Winding of pressure vessel (IfU & ITA 2019)Sources: (Kakita et al. 2014; Uozumi et al. 2015; Murata Machinery Ltd. 2017)

Need for sustainability-related comparison

of manufacturing techniques for mobile 

hydrogen storage

!
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1. Basic Sustainability Indicators (BSI) aggregated stepwise to Sustain-

ability Dimension Indices (SDI) & General Sustainability Index (GSI)

2. Normalization to increase comparability between different units

3. Fuzzy scales, linguistic terms & triangular membership functions

4. Rule base specifies aggregation (15,835 IF-THEN rules)

5. a) Fuzzification: translation of crisp inputs into linguistic terms

b) Inference: aggregation of indicators based on rule base

c) Defuzzification: translation back into crisp outputs

6. Visualization via color-coded Integrative Sustainability Triangle

Multi-Criteria Sustainability Assessment

Assessment approach: Fuzzy Logic Approach for Sustainability Assessment Based on

the Integrative Sustainability Triangle (Fuzzy-IST) (Bitter et al. 2016; 2017)
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Fig. 6: Fuzzy-IST process

(Bitter et al. 2016; 2017)
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• Indicator selection in five consecutive steps:
− 1. Literature analysis | 2. Pre-selection | 3. Classification based 

on sustainability dimensions | 4. Review of pre-selection based 

on expert knowledge | 5. Final selection

• Diverse primary and secondary data sources for 

quantitative and qualitative indicators with different units

Multi-Criteria Sustainability Assessment

Sustainability indicator-set

B21 B22 B31 B32 B33 B34 B41 B42 B43 B44 B51 B52 B53 B61 B71 B72

S2 S3 S4 S5 S6 S7

GSI

9 rules 81 rules 81 rules 27 rules 3 rules 9 rules

15,625 rules

Fig. 7: Aggregation hierarchy of indicator set (Bitter-Krahe 2021)

Dimension (SDI) No. Indicator (BSI) Unit Target

Social (S1) - - - -

Social-

environmental (S2)

B21 Greenhouse gas emissions g/kg ▼

B22 Soc.-env. criticality of material Qualitative scale ▼

Environmental (S3)

B31 Amount of waste m ▼

B32 Recycling scenario Discrete scenarios ▲

B33 Use of recycled material g ▲

B34 Prop. of recycled material % ▲

Environmental-

economic (S4)

B41 Energy consumption Wh/kg ▼

B42 Resource consumption g ▼

B43 Cost efficiency Euro/s ▼

B44 Resource costs Euro/kg ▼

Economic (S5)

B51 Cycle time min/preform ▼

B52 Flexibility Qualitative scale ▲

B53 Time efficiency Qualitative scale ▲

Social-economic (S6) B61 Product quality % ▼

Social-environmental-

economic (S7)

B71 Innovation Qualitative scale ▲

B72 Land use m2 ▼

Legend:▲ = High indicator value is advantageous, ▼ = Low indicator value is preferable

Tab. 2: Sustainability indicator set (Bitter-Krahe 2021)
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Multi-Criteria Sustainability Assessment

Input Data

No. Indicator (BSI) Unit
Single-Filament 

Winding (SFW)

Tubular Braiding 

Technique (BT)

Multi-Filament 

Winding 48 (MFW-48)

Multi-Filament 

Winding 90 (MFW-90)
Source(s)

B21 Greenhouse gas emissions g/kg 300.75 398.47 491.35 501.41 [1, 2, 8]

B22 Socio-environmental criticality of material Qualitative scale 5 1 3 3 [3]

B31 Amount of waste m 10.00 64.00 48.00 90.00 [1, 3]

B32 Recycling scenario Discrete scenarios 1 1 1 1 [6, 7]

B33 Use of recycled material g 1440.00 1440.00 1440.00 1440.00 [1]

B34 Proportion of recycled material % 51.80 51.20 52.30 53.50 [1]

B41 Energy consumption Wh/kg 750.00 993.70 1225.30 1250.41 [1, 2, 5, 4]

B42 Resource consumption g 1337.00 1375.00 1312.00 1250.00 [1]

B43 Cost efficiency Euro/s 0.28 0.91 1.37 2.56 [1–3]

B44 Resource costs Euro/kg 40.00 40.00 60.00 60.00 [2, 3]

B51 Cycle time min/preform 2.50 3.50 1.50 1.00 [1-3]

B52 Flexibility Qualitative scale 7 5 5 6 [3]

B53 Time efficiency Qualitative scale 5 3 6 7 [3]

B61 Product quality % 2.00 1.00 3.50 3.50 [1]

B71 Innovation Qualitative scale 5 4 6 7 [3]

B72 Land use m2 28.50 25.50 36.50 55.50 [2, 3]

Sources: [1] = Primary data from experiments in How2MultiWind; [2] = Material/machine data sheets; [3] = Expert estimation (How2MultiWind project team and user committee); [4] = (Suzuki and Takahashi 2005); 

[5] = (Song et al. 2009); [6] = (Bundestag 2012); [7] = (Ribeiro et al. 2016); [8] = (Icha and Kuhns 2020)

Tab. 3: Input data set (Bitter-Krahe 2021)
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Multi-Criteria Sustainability Assessment

Visualization of results & comparison of manufacturing approaches
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Fig. 8: Visualized results of Fuzzy-IST assessment for pressure vessel manufacturing approaches (Bitter-Krahe 2021)
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• Ranking of alternatives (relative assessment)

• Single-Filament Winding
− No critical sustainability dimension (medium to high scores)

− Strengths in environmental & environmental-economic (low waste)

− Weakness in social-environmental (high criticality of material - resin)

• Multi-Filament Winding
− Critical in social-economic dimension (low product quality - porosity)

− Strengths in environmental & economic

(high % of recycling material, low cycle time, high efficiency)

− Weaknesses in social-environmental & environmental-economic

(high GHG-emissions, energy consumption & resource costs)

Multi-Criteria Sustainability Assessment

Interpretation of assessment results

No. SDI/GSI SFW BT MFW-48 MFW-90

S2
Social-

environmental
0.500 0.756 0.275 0.250

S3 Environmental 0.750 0.500 0.740 0.750

S4
Environmental-

economic
0.750 0.503 0.287 0.250

S5 Economic 0.700 0.000 0.525 0.750

S6 Social-economic 0.600 1.000 0.000 0.000

S7
Social-environ-

mental-economic
0.617 0.500 0.650 0.500

GSI
General sustain-

ability index
0.645 0.500 0.497 0.500

Ranking 1 2 4 2
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Tab. 4: Assessment results (Bitter-Krahe 2021)
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• Single-Filament Winding (state of the art) is currently 

most sustainable manufacturing alternative

• No strict dominance between alternatives
− Different strengths and weaknesses (BSI & SDI level)

− Low variance between GSI values (0.497 – 0.645)

• Multi-Filament Winding & Tubular Braiding Technique 

require further research & development
− Some potentials on BSI & SDI level

− Lower maturity levels than Single-Filament Winding

− Especially MFW-90 is promising (issue: product quality)

Summary & Outlook

Summary Outlook

• Starting points for improvements

for Multi-Filament Winding:
− Improve energy consumption/efficiency & GHG-emissions

− Investigate alternative materials (pre-impregnated rovings)

− Reduce waste from manufacturing process

− Investigate approaches to increase product quality (porosity)

− Decrease machine size (land use)

• Further research potentials
− Re-assessment of alternatives after improvements

− Realize absolute sustainability assessment of alternatives 

(how do they contribute to sustainable development?)

− Sustainability assessment of entire life cycle of pressure 

vessels for mobile hydrogen storage & FCEV
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