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Usefulness of  remote sensing in 
mapping biodiversity



Spectral signatures of  surfaces

Different objects, such as vegetation, rivers, soils or even 
different plant species reflect the sun’s radiation in a 
different way. These spectral values are ecologically 
informative layers and hence, are very useful for biodiversity
studies at local scales. Satellite imagery cover large 
extensions, can be freely available and provide continuous 
spectral information.



How to improve biodiversity impact 
assessment?: A proposed framework



Baseline studies

Study area

Sampling units (~60 50-m transects) from field-data were used to

characterize the vegetation cover (%) of shrubs and herbaceous

plants in the study area
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Floristic ordination
(NMDS)

Each of this axes are indicators

or metrics of the species

composition

If two dots (representing the sampling

plots) are closer to each other it means

they share more species in common, or

that they are floristically more similar.

Community matrix



RS information

Biological 

information

“band1“,"band2“,"band3",
"band4","band5","band6",
"band7","ndvi","dem",
"slope“
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Just through simple linear regressions,

remote sensing predictors explain a great

percentage of the species composition



(C1) Maps of biodiversity patterns
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Using machine learning techniques (random

forest regression) it is possible to spatially

predict the species composition patterns

(“biodiversity patterns”)

Different colours show

locations that have different

combination of species



(C2) Beta-diversity / Singularity map
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By combining these three maps

(representing the species composition

axes) in one RGB (red-gree-blue) colour

composite, we can visualize better the

species composition in a single map

Each colour represents an area

that has a unique or “singular”

combination of species



(C3) Area of Applicability (AOA) / 

Uncertainty map
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Since we are dealing with spatial

predictions and machine learning, we

should avoid extrapolation and

overprediction. Therefore, we suggest the

AOA approach to identify locations where

we can actually trust the predictions

Purple colours show areas where the

predictions are reliable, and yellow

colours, locations where predictions

should be interpreted with caution.



Practicality



Impact Assessment

Planned infrastructure

Transects

New infrastructure
Projects are not static, on the contrary there will always be

changes in the alignment of components or new infrastructure.



Practicality

• Available biological information it
is often scattered and only cover
focalized locations. By combining
field-data with freely available
remote sensing predictors, it is
possible to map biodiversity
patterns in areas where field-data
is yet missing.

• We should still account for
uncertainty in the spatial
predictions.

Beta-diversity / Singularity map



Practicality

• Through the area of applicability
(AOA) method / uncertainty maps
it is possible to know if changes in
the project alignment or design will
require more field work.

• It is also possible to determine areas
that require higher sampling effort
for complementing the EIA baseline
studies.

Area of Applicability (AOA) / 

Uncertainty map



Practicality

• Having maps of biodiversity
patterns throughout a project’s study
area allow:

(i) avoiding species communities
with key species / endangered
species.

(ii) properly quantifying a project
footprint’s impact on
biodiversity

(iii) identifying suitable areas for
“like-for-like” compensation
schemes.

K-means classification (10 classes)

Beta-diversity / Singularity map
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