An Operative GIS-Based Methodology for Quantifying Impacts of Past, Present and Future Cumulative Actions of Projects

Assessing and Managing Cumulative Environmental Effects

1111

■ What works?

What doesn't?

How do we improve cumulative effects assessment and management?

6-9 November 2008 Calgary, Alberta, Canada 📉

A special topic meeting of the International Association for Impact Assessment

Giuseppe Magro

Nuclear engineer Dept. of Energy, Nuclear Engineering and Environmental Control D.I.E.N.C.A., University of Bologna President IAIA Italia Affiliate

Stefania Pellegrini

Civil engineer IAIA Italia

Federico Pelizzari

Environmental consultant IAIA Italia

IAIA Italia

Operative GIS-Based Methodology

Let's see the space-time framework of the methodology

The model characterizes their **interaction** in a space-time frame

STRESSOR VULNERABILITY INTERACTION FRAME - SVIF

Each stressor element \mathbf{m}_i is characterizated by stressor attributes or pressure attributes in space-time frame so that we write them in a space-time function $a_{ij}(r,t)$.

 $\mathbf{m}_i = \sum a_{ij} (r,t) \mathbf{u}_j$

Ex.

Emission of traffic produces several pollutants each one with is concentrations, with its "story".

Mstreet1=**a**1РМ10 (**r,t**) **UPM10**+**a**1noise (**r,t**) **Unoise**+...

 $m_{street1}(r^*,t) = a_{11}(r^*,t) u_1 + a_{12}(r^*,t) u_2$

We can also represent in GIS mode:

It is possible to introduce a general stressor frame $\sigma(\mathbf{r},\mathbf{t})$ which takes into consideration all stressor elements of assessment domain.

σ(r,t) is defined on Domain of assessment and represents the STATE OF ANTHROPIC PRESSURE ON THE SYSTEM

 \rightarrow it is now necessary to introduce environment in the model

Environment is represented by K elements of our conceptual model so that is possible to define a, similar to $\sigma(r,t)$, matrix for it.

	VECs frame			
ε(r,t)	V ₁	v ₂		
k ₁	b 11	b 12		
k ₂	b 21	b 22		
k ₃	b 31	b 32		

 $\mathbf{k}_{h} = \sum b_{hk} (\mathbf{r}, \mathbf{t}) \mathbf{v}_{k}$

For example:

Kurban area = $b_{urban} density(r,t)v_{density} + b_{urban} children density(r,t)v_{children} density$

CALCULATING CUMULATIVE IMPACTS

STRESSOR ELEMENTS

TENSOR OF STRESSOR $\sigma(r,t)$

u-frame	u ₁	u ₂	UOTHER
TYPE 1	\checkmark	\checkmark	
TYPE 2	0	✓	
OTHER type			

Pressure attribute associated with ranking analysis of models (University of Brescia)

VULNERABILITY ELEMENTS

TENSOR OF VULNERABILITY ε(r,t)

Vulnerability attribute

It is possible to study the **interaction frame** previously introduced by conceptual model

For example, if a_{11} is concentration of PM10 [µg/mc] and b_{11} is urban density [people/mq], we can study interaction through report analysis.

1613500

Calculation of past, present and future cumulative impacts:

a) Cumulative σ -frame $\int \sigma dt$ b) Cumulative $\sigma \cdot \varepsilon$ -frame $\int \sigma \cdot \varepsilon dt = \int i dt$

σ(r,t) and **i(r,t)** have Lilj state "outcomes" and we can compute then in **past, present and future** or having a istantaneous value of the matrix function.

Cumulative impacts: an example

TENSOR OF STRESSOR σ(r,t)

	U _{PM10}	u _{dB}
m ₁	0	a _{1,dB}

DCGIS tool produces cumulative impact matrixes for specific stressor-vulnerability interaction.

TIME

Graph report (h. 8)

Temporal graph of level L4

Graph report (h. 17)

Temporal graph of level L2

CONCLUSIONS

- DCGIS methodology provide a **general framework** for cumulative impact analysis and evaluation, working with different kinds of analitical model defining pressure and vulnerability indicators;

- Mathematical **vectorial characterization** of stressors and vulnerability elements introduce a new algebra for computing impacts in space-time frame;

-A GIS based tool for managing cumulative effects in terms of **prevention, protection and mitigation** in planning activities and control (scenarios comparative assessment)

-Operative language for managing **different levels of complexity** with an iterative process of assessment (EIA, SEA and Regional Risk assessment).

...questions?

info@iaiaitalia.it

Assessing and Managing Cumulative Environmental Effects

