An Operative GIS-Based Methodology for Quantifying Impacts of Past, Present and Future Cumulative Actions of Projects

Assessing and Managing Cumulative Environmental Effects

- What works?
- What doesn’t?
- How do we improve cumulative effects assessment and management?

6-9 November 2008
Calgary, Alberta, Canada

Giuseppe Magro
Nuclear engineer
Dept. of Energy, Nuclear Engineering and Environmental Control D.I.E.N.C.A., University of Bologna
President IAIA Italia Affiliate

Stefania Pellegrini
Civil engineer
IAIA Italia

Federico Pelizzari
Environmental consultant
IAIA Italia

A special topic meeting of the International Association for Impact Assessment

IAIA Italia
Operative GIS-Based Methodology

Let’s see the space-time framework of the methodology

CONCEPTUAL MODEL

\[D = \text{Domain of assessment} \]
\[m = \text{Stressor elements} \]
\[K = \text{Vulnerability elements} \]

The model characterizes their **interaction** in a space-time frame

STRESSOR VULNERABILITY INTERACTION FRAME - SVIF
Each stressor element m_i is characterized by stressor attributes or pressure attributes in space-time frame so that we write them in a space-time function $a_{ij}(r,t)$.

$$m_i=\sum a_{ij}(r,t) \ u_j$$

Ex.
Emission of traffic produces several pollutants each one with is concentrations, with its “story”.

$$m_1=a_{11}(r,t) \ u_1+a_{12}(r,t) \ u_2+...$$

Stressor element
Concentration function (sampled function or modelling simulation)
Space of a_{11} function corresponding with one of our GIS space

$$m_{street1}=a_{1PM10}(r,t) \ u_{PM10}+a_{1noise}(r,t) \ u_{noise}+...$$
\[\mathbf{m}_{street1}(r^*, t) = a_{11}(r^*, t) \, \mathbf{u}_1 + a_{12}(r^*, t) \, \mathbf{u}_2 \]

We can also represent in GIS mode:
It is possible to introduce a general stressor frame \(\sigma(r,t) \) which takes into consideration all stressor elements of assessment domain.

\[
\begin{array}{c|c|c|c}
\sigma(r,t) & u_{PM10} & u_{\text{noise}} & \ldots \\
\hline
m_{\text{street1}} & a_{1PM10} & a_{1\text{noise}} & \\
\hline
m_2 & a_{2PM10} & a_{2\text{noise}} & \\
\hline
m_3 & a_{3PM10} & a_{3\text{noise}} & \\
\hline
\ldots & \ldots & \ldots & \\
\end{array}
\]

This column takes into consideration contributions given by all stressor elements ON PM10 space.

This row takes into consideration different contribution given only by \(m_{\text{street1}} \) ON all pressure attributes (indicators).

\(\sigma(r,t) \) is defined on Domain of assessment and represents the STATE OF ANTHROPIC PRESSURE ON THE SYSTEM

→ it is now necessary to introduce environment in the model
Environment is represented by K elements of our conceptual model so that it is possible to define a similar to $\sigma(r,t)$, matrix for it.

VECs frame

<table>
<thead>
<tr>
<th>$\varepsilon(r,t)$</th>
<th>v_1</th>
<th>v_2</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_1</td>
<td>b_{11}</td>
<td>b_{12}</td>
<td></td>
</tr>
<tr>
<td>k_2</td>
<td>b_{21}</td>
<td>b_{22}</td>
<td></td>
</tr>
<tr>
<td>k_3</td>
<td>b_{31}</td>
<td>b_{32}</td>
<td></td>
</tr>
<tr>
<td>\ldots</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$k_h = \Sigma b_{hk}(r,t) v_k$

For example:

$K_{\text{urban area}} = b_{\text{urban density}}(r,t) v_{\text{density}} + b_{\text{urban children density}}(r,t) v_{\text{children density}}$
CALCULATING CUMULATIVE IMPACTS

STRESSOR ELEMENTS

TENSOR OF STRESSOR $\sigma(r,t)$

<table>
<thead>
<tr>
<th>u-frame</th>
<th>u_1</th>
<th>u_2</th>
<th>u_{OTHER}</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE 1</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>TYPE 2</td>
<td>0</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>OTHER type</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Pressure attribute associated with ranking analysis of models (University of Brescia)

VULNERABILITY ELEMENTS

TENSOR OF VULNERABILITY $\varepsilon(r,t)$

<table>
<thead>
<tr>
<th>v-frame</th>
<th>v_1</th>
<th>v_2</th>
<th>v_{other}</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_1</td>
<td>✔</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>K_2</td>
<td>0</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>K_{other}</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Vulnerability attribute

MATRIX OF CORRELATION θ

<table>
<thead>
<tr>
<th></th>
<th>u_1</th>
<th>u_2</th>
<th>u_{OTHER}</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>v_2</td>
<td>0</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>v_{other}</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

$i = \sigma \cdot \varepsilon$
It is possible to study the **interaction frame** previously introduced by conceptual model

\[i = \sigma \cdot \epsilon = \begin{bmatrix} u_{1V1} & u_{1V2} \\ u_{2V1} & u_{2V2} \end{bmatrix} \]

\[i_{u1v1} = a_{11} \cdot b_{11} \cos \theta_{11} \]

Entity of pressure
Entity of vulnerability
Entity of tipological interaction
For example, if a_{11} is concentration of PM10 [$\mu g/mc$] and b_{11} is urban density [people/mq], we can study interaction through report analysis.

$$b_{11} = [l_1 \ldots l_m]$$

$$a_{11} = [L_1 \ldots L_n]$$

DCGIS GEO-REPORT
Calculation of past, present and future cumulative impacts:

a) Cumulative σ-frame $\int \sigma dt$

b) Cumulative $\sigma \cdot \varepsilon$-frame $\int \sigma \cdot \varepsilon dt = \int idt$

$\sigma(r,t)$ and $i(r,t)$ have Lij state “outcomes” and we can compute then in past, present and future or having an instantaneous value of the matrix function.

$\int \sigma dt = 3$ \hspace{1cm} $\int \sigma dt = 5$

$\int idt = 5$ \hspace{1cm} $\int idt = 9$

$\int \sigma dt = 6$ \hspace{1cm} $\int idt = 12$

$\sigma(r,T) = 6$ \hspace{1cm} $i(r,T) = 12$
Cumulative impacts: an example

TENSOR OF STRESSOR
σ(r,t)

<table>
<thead>
<tr>
<th></th>
<th>(u_{PM10})</th>
<th>(u_{dB})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_1)</td>
<td>0</td>
<td>(a_{1,dB})</td>
</tr>
</tbody>
</table>
DCGIS tool produces cumulative impact matrixes for specific stressor-vulnerability interaction.

<table>
<thead>
<tr>
<th>TIME</th>
<th>ACTION 1</th>
<th>ACTION 2</th>
<th>ACTION 3</th>
<th>ACTION 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONCLUSIONS

- DCGIS methodology provide a general framework for cumulative impact analysis and evaluation, working with different kinds of analitical model defining pressure and vulnerability indicators;

- Mathematical vectorial characterization of stressors and vulnerability elements introduce a new algebra for computing impacts in space-time frame;

- A GIS based tool for managing cumulative effects in terms of prevention, protection and mitigation in planning activities and control (scenarios comparative assessment)

- Operative language for managing different levels of complexity with an iterative process of assessment (EIA, SEA and Regional Risk assessment).
...questions?

info@iaiaitalia.it