

Climate Change Impacts and Adaptation in the Mining Sector

Sean Capstick, Golder Associates

Climate Change and Risk Management: Infrastructure Case Studies IAIA Sustainable Mega-Infrastructure and Impact Assessment

Climate Change Adaptation

Industry Recognition of the Problem

Report

Adapting to a changing climate: implications for the mining and metals industry

- Mines are often located in areas with extreme weather and challenging conditions
- ICMM identified a growing awareness that a changing climate and its impacts can affect the mining industry
- Report identifies potential climate impacts and how mining and metals companies can evaluate risks
- Provides available options for adapting to climate change impacts

Typical Mine Life Cycle

Incorporating Climate Change into Project Life Cycle

- Climate data is incorporated in most facets of Mining Projects and Infrastructure Design
- Design is generally based on historic climate data
 - Foundation Design
 - Material Specification
 - Tailings Dam Design
 - Outflow structures
 - Dewatering Requirements
 - Power Requirements
 - Water Supply / Water Balance
 - Closure Design
 - Transportation

Risk Based Assessment Tools

	Climate Factor					
Intrastructure Component	Temperature	Rain	Snow	Wind	Mixed Events	
Stormwater, Wastewater Treatment and Collection Systems	Y	Y	Y	Y	Y	
Water Resource Systems	Y	Y	Y	N	N	
Ground Transportation	N	Y	Y	N	Y	
Buildings and Infrastructure	N	N	N	N	Y	
Environmental Compliance	Y	Y	Y	N	Y	
Biodiversity	Y	Y	N	N	N	
Public Infrastructure	N	N	N	N	Y	

 $R = C \times P$

R = Risk C = Consequence P = Probability

Incorporating Climate Change in to ESIA's

Case Study: Meliadine Mine, Rankin Inlet, NU, Canada

- Project located in Canadian Arctic
- Golder completed a ESIA in 2013
- Climate Change impact assessment was an important Technical Supporting Document
- Hearings held in Nunavut in 2014
- Assessment of significance on tailings design and bio-diversity were of particular interest during the review

Case Study: Iron Ore Mine, South Eastern Guinea, West Africa

- Project located in a mountain range has an altitudinal gradient of over 1,000 m from lowland to summit
- Surrounded by an area classified under Guinean Law as a Strict Nature Reserve (SNR)
- Assessment of localized micro climate and effects of changes to topography and potential impacts to biodiversity

Case Study: Copper Mine, Northern region of Argentina

- Project located at approximately 2,600 m asl in an arid area
- Investigation of meteorological trends that could affect the water balance, especially at closure
- Results showed that projected increases in total precipitation was within historical observations, however pan evaporation is projected to increase
- Availability of water identified as an issue

Operations and Closure

Case Study: Vulnerably Assessment, Sudbury INO ON, Canada

Climate-Related Risk: Adapting to What?

IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley

(eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

GCM Output – Scatter Plot

The Future is Always Uncertain

Generating Climate (Precipitation)

Water Management

Economic Models

CBA to Identify Adaptation Uncertainties

Summary of Results – 10 year

10 Year Period		Coping Preferred	Adaptation Preferred		
		Payback Not Achieved	Payback Achieved		
E1	Current Climate	89.5%	10.5%		
	Future Climate	86.4%	13.6%		
E2	Current Climate	13.2%	86.8%		
	Future Climate	1.4%	98.6%		
E3	Current Climate	92.6%	7.4%		
	Future Climate	44.5 <mark>%</mark>	55.5%		
E4	Current Climate	100%	0%		
	Future Climate	100%	0%		
E5	Current Climate	96.6%	3.4%		
	Future Climate	71.8%	28.2%		

Summary of Results 40 year

39 Year Period		Coping Preferred		Adaptation Preferred			
		Payback Not Achieved		Payback Achieved			
E1	Current Climate		83.1%			16.9%	
	Future Climate		79.2%			20.8%	
E2	Current Climate	0.2%		99.8%			
	Future Climate	0%		100%			
E3	Current Climate		73.8%			26.2%	
	Future Climate		4.3%		95.7%		
Current Climat		100%		0%			
C4	Future Climate		100%		0%		
E5	Current Climate		88.6%		11.4%		
	Future Climate		30.8%			69.2%	

- Climate Change Impact Assessments should:
 - Clearly document both baseline and future climate projections that will be used in the assessment
 - Use a multi model and multiple concentration pathways analysis to describe the range and uncertainties of the future climate projections
 - Clearly identify the Valued Components and climate interactions that are to be considered in the assessment
 - Document the significance assessment for the identified interactions
 - Identify the proposed design features or adaptation measures (mitigation measures) that are proposed
 - Better document Adaptive Management Strategies between coping and adaptation and rational why one is preferred over the other

Sean_Capstick@Golder.com

